skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Islam, Shafkat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 14, 2026
  2. Recently, using drones for forest fire management has gained a lot of attention from the research community due to their advantages such as low operation and deployment cost, flexible mobility, and high-quality imaging. It also minimizes human intervention, especially in hard-to-reach areas where the use of ground-based infrastructure is troublesome. Drones can provide virtual reality to firefighters by collecting ondemand high-resolution images with adjustable zoom, focus, and perspective to improve fire control and eliminate human hazards. In this paper, we propose a novel model for fire expansion as well as a distributed algorithm for drones to relocate themselves towards the front-line of an expanding fire field. The proposed algorithm comprises a light-weight image processing for fire edge detection that is highly desirable over computational expensive deep learning methods for resource-constrained drones. The positioning algorithm includes motions tangential and normal to fire frontline to follow the fire expansion while keeping minimum pairwise distances for collision avoidance and non-overlapping imaging. We proposed an action-reward mechanism to adjust the drones’ speed and processing rate based on the fire expansion rate and the available onboard processing power. Simulations results are provided to support the efficacy of the proposed algorithm. 
    more » « less
  3. This paper presents a novel mission-oriented path planning algorithm for a team of Unmanned Aerial Vehicles (UAVs). In the proposed algorithm, each UAV takes autonomous decisions to find its flight path towards a designated mission area while avoiding collisions to stationary and mobile obstacles. The main distinction with similar algorithms is that the target destination for each UAV is not apriori fixed and the UAVs locate themselves such that they collectively cover a potentially time-varying mission area. One potential application for this algorithm is deploying a team of autonomous drones to collectively cover an evolving forest wildfire and provide virtual reality for firefighters. We formulated the algorithm based on Reinforcement Learning (RL) with a new method to accommodate continuous state space for adjacent locations. To consider a more realistic scenario, we assess the impact of localization errors on the performance of the proposed algorithm. Simulation results show that the success probability for this algorithm is about 80% when the observation error variance is as high as 100 (SNR:-6dB). 
    more » « less